Playing Fair With Time Series Data
نویسندگان
چکیده
منابع مشابه
Missing data imputation in multivariable time series data
Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...
متن کاملPlaying with Data Bases
Among the specific forms of rationality that are to be analyzed with regards to games are the control circuit, the simulation and the data base. As different cultural forms of the computer’s conveyed mediality they represent intermediate elements between the calculating, programmable machine and the cultural grammar of its handling as well as its social implementation, between ‘hard’ technology...
متن کاملDeep reinforcement learning for time series: playing idealized trading games
Deep Q-learning is investigated as an end-to-end solution to estimate the optimal strategies for acting on time series input. Experiments are conducted on two idealized trading games. 1) Univariate: the only input is a wave-like price time series, and 2) Bivariate: the input includes a random stepwise price time series and a noisy signal time series, which is positively correlated with future p...
متن کاملTime-Series Data Analysis with Rough Sets
The analysis of time-series data is important in many areas. Various tools are used for financial time-series data and there is no consensus for the best models. Rough sets is a new mathematical theory for dealing with vagueness and uncertainty. We apply rough set theory in the analysis of New Zealand stock exchanges. A general model for timeseries data analysis is presented. The experimental r...
متن کاملOnline Time Series Prediction with Missing Data
We consider the problem of time series prediction in the presence of missing data. We cast the problem as an online learning problem in which the goal of the learner is to minimize prediction error. We then devise an efficient algorithm for the problem, which is based on autoregressive model, and does not assume any structure on the missing data nor on the mechanism that generates the time seri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Potentials
سال: 2020
ISSN: 0278-6648,1558-1772
DOI: 10.1109/mpot.2018.2868000